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SUMMARY 

This report presents the research results from the research gmnt entitled "Active Control of  
Robot Manipulators", funded by  the Goddard Space Flight Center, under the Gmnt Number 
NAG 5-780, for the period between July 1, 1988 and January 1, 1989. 

In this report, we present the analysis of a 6 DOF robot end-effector built to study telerobotic 
assembly of NASA hardwares in space. Since the end-efector is required to perform high precision 
motion in a limited workspace, closed-kinematic chain mechanism is chosen for its design. A 
closed-form solution is obtained for the inverse kinematic problem and an itemtive pmedure 
employing Newton-Raphson method is proposed to solve the forward kinematic problem. A study 
of the end-eflector workspace results in a general procedure for the workspace determination based 
on the link constmints. Computer simulation results are presented. 
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Performing operations outside of life supporting environments such as the future NASA space 
station is considered to be a relatively hazardous task. Therefore, the concept of using space 
robots instead of astronauts for servicing and maintaining spacecrafts attracts tremendous 
robotic researchers’ attention. Recognizing the above fact, NASA has focused on the research of 
telembotics, a joining of teleopemtion and robotics [l]. Teleoperation enables the human opera- 
tor to perform tasks remotely in a shirtsleeve environment and robotics allows tasks, which are 
impossible to human control by teleoperation to be accomplished by a telerobot. Telerobotic 
operations can be performed either in a traded control mode (serial operation) or in a shared 
control mode (parallel operation). In the traded control mode, using teleoperation the human 
operator performs some portion of a task and then let the telerobot perform some other portion 
of the task autonomously. On the other hand, the human operator and the telerobot perform 
portions of the task simultaneously in a shared control mode. In either modes, successful robotic 
tasks require that the motion of the telerobot be controlled precisely. Robot motion can be cat- 
egorized into gross motion and fine motion. While gross motion permits low position tolerances, 
e.g. in obstacle avoidance, fine motion requires a relatively high position tolerance, usually of 
thousands of an inch, e.g. in mating and fastening of parts. A telerobot system mainly consists 
of a master arm and a slave arm [Figure 11 which is a general open-kinematic chain (OKC) 
manipulator with six degrees of freedom (DOF) or more. During an assembly task, it is im- 
practical to require the OKC manipulator to perform both gross and fine motion since OKC 
manipulators generally have poor performance in a fine motion operation. Therefore, the opera- 
tion is more effective if a robotic end-effector possessing a capability of high precision positioning 
is mounted to the end of the OKC manipulator to perform fine and precise motion while the 
OKC manipulator performs only gross motion. The above distribution of tasks actually occurs 
in an operation performed in a traded control mode where the operator uses the master arm 
to move the OKC manipulator into the end-effector workspace in a gross motion mode and the 
end-effector will take over and perform the assembly autonomously in a fine motion mode. 

Although OKC manipulators have large workspace and possess high desterity, they are not 
used as high precision positioning devices because the cantilever-like structure causes the robot 
arm to have low stiffness. In addition, OKC manipulators have low vibrational frequencies due 
to the accumulation of effective masses associated with manipulator actuators and their open 
chain structure. In this kind of manipulators, large position error occurs at the last link because 
actuator errors accumulate throughout the OKC mechanism. Finally OKC manipulators have 
low strengh-to-weight ratios due to the fact that payloads are not uniformly distributed to 
the actuators. The above disadvantages of OKC manipulators have motivated active research 
of an alternative type of manipulators designed based on closed-kinematic chain mechanism 
(CKCM). A typical CKCM manipulator consists of two platforms driven by a number of parallel 
actuators and is often referred as pamllel mechanism or pumllel manipulator. Paying the price 
of relatively small workspace and low maneuverability, CKCM manipulators enjoy the high 
positionioning capability produced by their high structural rigidity and noncumulative actuator 
errors. CKCM manipulators also have higher strenght-to-weight ratios as compared to OKC 
manipulators because their actuators share the load proportionally. In summary, the CKCM is 
an ideal device for robotic tasks that require high precision motion within a limited workspace, 
e.g. in a fine motion mode of the telerobot end-effector. 
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Implementation of the CKCM concept first appeared in the design of the Stewart platform 
[2], originally designed as an aircraft simulator whose motion control problem was considered 
later in [3]. After its introduction, the Stewart platform mechanism attracted considerable 
researchers' interest and was proposed in many robotic applications [4,11]. New structural 
designs of robot arms based on the Stewart platform were proposed in [4] and motivated further 
development in [5]. A general technique was developed in [S] to  describe the instantaneous 
link motion of a single closed-loop mechanism by employing linear algebra elements to screw 
systems. The author in [7] investigated the structural kinematic problem of in-paallel robot 
manipulators. A passive compliant robot end-effector was manufactured in [8] by utilizing the 
concept of Stewart platform mechanism whose kinematic problems and practical construction 
were later considered in (91 and [lo), respectively. Investigation of inverse dynamic problem 
of platform-based manipulators was done in [ll] and analysis of kinematics and dynamics of 
parallel manipulators was conducted in [12]. Dynamical equations for a 3 DOF CKCM and a 
2 DOF CKCM manipulator were derived in [13] and [14], respectively by using the Lagrangian 
formulation. 

Since CKCM is capable of performing high precision motion in a relatively small workspace, 
it is natural to propose that it be utilized in designing the end-effector to be mounted to the 
slave arm of the telerobot system to perform fine motion. As a consequence, a 6 DOF robot end- 
effector whose structure assumes a CKCM was recently designed and built to  serve as a testbed 
for studying telerobotic assembly of NASA hardwares [8] in space. In this report, we first describe 
the main components of the CKCM end-effector. We then present the kinematic analysis which 
provides a closed-form solution to the inverse kinematic problem and an iterative procedure 
using Newton-Raphson method for the solution of the forward kinematic problem. Next we 
examine the workspace problem and then propose a general procedure for the determination of 
the reachable workspace for a set of link constraints. Computer simulation is then performed to 
demonstrate the procedure. Finally, evaluations and discussions of obtained results will conclude 
the report. 

THE CKCM END-EFFECTOR 

Figure 1 presents an artist's conception of a dual arm telerobot system consisting of a master 
system and slave system. The human operator uses the master arm to control the gross motion 
of the slave arm and the CKCM end-effectors mounted a t  the end of the two slave arms au- 
tonomously perform part assembly in a fine motion mode within its workspace. The end-effector 
should be manufactured such that it satisfies the requirements of compactness and lightweight. 
In order to study the performance of autonomous assembly of parts in a telerobotic operation, a 
6 DOF end-effector whose size is about ten times that of the telerobot end-effector was designed 
and built at  the Goddad Space Flight Center (GSFC) [8] and is currently located at the Center 
for Artificial Intelligence and Robotics (CAIR)'. As shown in Figure 2, the end-effector is a 
modified version of the Stewart platform, and mainly consists of an upper payload platform, a 
lower base platform and six linear actuators. The movable payload platform is supported above 
the stationary base platform by six axially entensible rods where recirculating ballscrews are 
used to provide the extensibility. Stepper motors were selected to drive the ballscrews to extend 

To test control schemes developed under a research grant with NASA/GSFC 1 
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or shorten the actuator lenghts whose variations will in turn produce the motion of the payload 
platform. Each end of the actuator links is mounted to the platforms by 2 rotary joints whose 
axes intersect and are perpendicular to each other. Therefore, the system fias 24 rotary joints, 
6 prismatic joints, and 14 links including the 2 platforms. Using the number synthesis [4], it can 
be shown that the CKCM end-effector possesses 6 degrees of freedom. 

THE INVERSE KINEMATICS 

In this section we first start developing the kinematic equation for a 6 DOF end-effector and 
then discuss the special cases of end-effectors having smaller number of degrees of freedom. 
Inverse kinematics deals with the determination of a set of joint variables, which yield a set of 
Cartesian variables, usually composed of Cartesian position and orientation of the end-effector 
with respect to some reference frame. For the CKCM end-effector, the lenghts of the links can 
be adjusted by the actuators, and therefore axe chosen to be the joint variables. To define the 
Cartesian variables we proceed to assign two coordinate frames {A}, and {B} to the movable 
and base platforms, respectively. As Figure 3 illustrates, the origin of Frame {A} is chosen to be 
the centroid A of the payload platform, the i axis is pointing upward and the x ~ - a x i s  passes 
through the joint attachment point AI. The angle between A1 and A2 is denoted by OA, and in 
order to obtain a symmetrical distribution of joints on the payload platform the angles between 
A1 and A3 and between A3 and A5 are set to 120". Similarly, Frame {B} has its origin at  the 
centroid B of the base platform. The xg-axis passes through the joint attachment point B1 and 
the angle between B1 and B2 is denoted by Bg. Also the angles between B1 and B3 and between 
B3 and Bs are set to 120" so that a symmetrical distribution of joints on the base platform 
can be achieved. The Cartesian variables are chosen to be the relative position and orientation 
of Frame {A} with respect to Frame {B} where the position of Frame {A} is specified by the 
position of its origin with respect to Frame {B}. Now if we denote the angle between AA; and 
X A  by A;, and the angle between BB; and xg by A; for i=1,2,. . . ,6, then by inspection we obtain 

A; = 60(i - 1)"; X i  = 60( i  - 1)" for i = 1,3,5 (1) 

Furthermore, if Vector Aa; = (a;= a;, describes the position of the attachment point A, 
with respect to Frame {A}, and Vector Bb; = (bjZ b;, ~ 5 ; ~ ) ~  the position of the attachment point 
Bi with respect to Frame {B}, then they can be written as 

T 
A a ;  = [ r A c o s ( ~ ; )  r A s i n ( ~ ; )  o ] (3) 

T and 
Bb; = [ rgcos(Ai)  rgsin(A;) 0 ] (4) 

for i=1,2,. . . ,6 where f A  and r g  represent the radii of the payload and base platforms, respec- 
tively. 

We proceed to consider the vector diagram for an ith actuator given in Figure 4. The lenght 
vector B q; = (q;= q;, expressed with respect to Frame {B} can be computed by 

0 ( 5 )  

3 



0 

0 

a 

JI 

a 

where Vector Ba; and Vector Bd describe the positions of A; and A, respectively both in terms 
of Frame {B}. Vector Bd contains the Cartesian coordinates x, y, z of the origin, A of Frame 
{A} with respect to  Frame {B} such that 

Let 
respect 

' d = ( z  y z ) ~ .  

ZR be the Orientation Matriz, which represents the orientation of Frame (A} with 
to Frame {B} and can be expressed as 

L f3l f32 f33 J 

for i=1,2,. . . ,6, then 'a; can be computed by 

Ba. * - A  - BR 'aj + Bd. 

Now substituting (8) into ( 5 )  yields 

Bq; = ZR 'a; t Bd - Bb; for  i=1,2,. . . ,6, 

which can be rewritten as 

1 ~ i i a i z  + ~12aiy t rl3aiZ t z - biz 
~2iaiz + f22aiy t f23aiz + Y - biy qi = . [ f31a;z t f32aiy t ~ 3 3 a i z  t z - biz 

B 

Furthermore, the lenght of Vector Bqi, f ;  can be computed from the vector components as 

From the properties of orientation matrix we have 

and 
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and also from (1) and (2) we note that 

0 

0 

0 

0 

and 
1 2 2 + + a;, = T A ,  

b% + 6;2Y + b:, = r g .  2 

Therefore, (12) can be simplified to 

li2 = z2 + y2 t z2 + T: + T; + 2 ( ~ 1 1 ~ i z  + ~12aiy)(x - biz) 

+2(f21% + r22a;y)(y - biy) + 2(r3laiz + r32aiy)Z - 2(zb;z), ( 18) 

for i=1,2,.. . ,6.  
Equation (18) represents the solution to the inverse kinematic problem in the sense that for 

a given Cartesian configuration, composed of the position and orientation specified by (6) and 
(7), respectively, the actuator lengts l ;  for i=1,2,. . . ,6, can be computed using (18). We observe 
that nine variables are needed to describe the orientation of Frame {A} in Equation (7) and 
six of them are redundant because only three are needed to specify an Orientation (181. There 
exist several ways to represent an orientation by three variables, but the most widely used one 
is the Euler Angles a, p, and 7 ,  which represent the orientation or Frame {A}, obtained after 
the following sequence of rotations from Frame {B}: 

1. A rotation of a about the 2 g - d ~  (Roll) 

2. A rotation of p about the y~-axis (Pitch) 

3. A rotation of 7 about the x~-axis (Yuw). 

The orientation represented by a, p, and 7 ,  is given by 

(19) 1 [ -sP C P  SY C P  CY 

ca  cp  ca  s p  s7 - s a  cy ca sp  cy + sa sy 
R z y r ( ~ , P , ~ )  = SO CP sa SP ~7 t ca CY sa SP CY - CQ ~7 . 

Figure 5 illustrates the application of the inverse kinematics in a joint-space control scheme 
where the desired position and orientation of the payload platform, specified by six variables 
x,y,z,a,P, and 7 are converted to required actuator lenghts by using Equations (18) and (19), 
and to be compared with the actual lenghts measured by displacement sensors such as linear 
voltage differential transformers (LVDT), mounted along the actuator links. 

Special Cases 

We observe that the solution to the inverse kinematic problem presented by Equation (18) is 
expressed in term of the vectors Aai and Bb;, which depend on X i  and A;, respectively. To make 
the solution applicable to end-effectors which has a smaller number of degrees of freedom, we 
modify Equations (1) and (2), while preserving the symmetrical distribution of joints on the 
payload and base platforms to include the following cases: 

' c a  cos a, and sa s sin a. 
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Even Number of DOF: 
360 360 
n n 

A; = -(i - 1)"; A; = -(i - 1)" for  i = odd. 

and 
= Ai-l .+ O B ;  Xi = + e A  for i = even. 

where n = 2,4,6, is the number of DOF and @A and e B  are arbitrarily selected by the designer 
of the end-effec tor. 

a, 

a 

0 
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Odd Number of DOF: 

(22) 
360 
n 

A .  , - - A .  , - - -(i - 1)" for i = 1,2 ,..., n 

where n = 1,3,5, is the number of DOF and it is noted that in this case, BA = OB = F. 
in [9] for 6 DOF, whose joint distributions aJl agree with (20)-(22). 

Investigations of several special cases were reported in [14] for 2 DOF, in [13] for 3 DOF and 

THE FORWARD KINEMATICS 

The forward kinematics deals with determining the position and orientation of the payload 
platform when the actuator lenghts l i  for i=1,2,. . . ,6, are given. This situation often occurs in a 
Cartesian-space control scheme where the lenghts measured by the LVDT's are to be converted 
to the corresponding payload platform position and orientation which are then compared with 
the desired configuration specified by the user. 

Let us consider Equation (9), in which the orientation matrix f R  is replaced by RzYZ(a,P,y) 
described in (19). In (9), if Bq; were available, for i=1,'2, ..., 6, then with 18 equations and 
12 unknowns including rjk for j=k=1,2,. . . ,3, and x,y,z, the solution could be obtained in a 
closed-form expression. The orientation angles a , P , y  can then be found by solving the inverse 
kinematic problem of the Euler Angles [18]. However, since there exists no unique vector Bqi for 
a given lenght l ; ,  the above approach is not feasible. In addition, sensors measuring Cartesian 
coordinates are not readily available while joint displacement sensors such as LVDT are usually 
of-the-shelf items. Consequently, in a practical situation, only the information of the actuator 
lenghts is available, and it leaves us no alternative but to apply Equation (18) to solve the 
forward kinematic problem. 

The forward kinematic problem can be now formulated as to find a vector Bd (position) and 
a matrix Rryz(a,P,y) (orientation) such that for a given set of I; for i=1,2,. . . ,6, Equation (18) 
holds. We recognize that it is a difficult, if not impossible task because we have to deal with a set 
of 6 highly nonlinear simultaneous equations with 6 unknowns. Similar to the inverse kinematics 
of OKC manipulators, generally there exists no closed-form solution for the forward kinematics 
of CKCM manipulators. It leads us to seek an iterative numerical method to solve the above set 
of nonlinear equations. One widely used technique for solving nonlinear equations has been the 
Newton-Raphson method [19], which is proposed in this section to solve the forward kinematic 
problem. 

In order t o  apply the Newton-Raphson method, first we should define 6 scalar functions 

fi(a) = 0 f o r  i=1,2,. . . ,6 (23) 
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where the vector a is defined as 
T 

a = ( x  Y P 7 )  , 

ak+l = a k  - [J(ak) l - l  f b k )  

f(a) = [ flT(a) f 2 ~ ( a )  tT(a) fiT(a> fST(a> &'(a> ] , 

and then employ the iterative formula 

T where 

and the Jacobian matrix J of f  is given by 

until certain acceptable error is achieved. 
The scalar functions specified by (23) can be found by rewriting (18) so that 

(24) 

2' + y2 + z2 + r i  + r i  + 2(r11aiz + ~12aiy)(x - biz) 

+2(~21aiz + r ~ ~ a i y ) ( y  - biy) + 2(T31ai, + ~ 3 2 a i y ) ~  - 2(~biz)  - f i 2  = 0, (28) 

for i=1,2,. . . ,6. The following algorithm summarizes the application of Newton-Raphson method 
in solving the forward kinematic problem 

Algorithm 1 

1. Select an initial guess al .  

2. Compute fi(a1) for i=1,2,. . . ,6 using (28). 

3. Compute J(a1) using (27). 

4. Compute a 2  using (25). 

5. Compute the difference between a2 and a l .  

6. Repeat Steps 1-5 until an acceptable difference is obtained. 

In Step 6, an acceptable error can be established by setting up a tolerance value T so that 
when the element e; of the error vector e at the k iteration given by 

e = -J-' f ( a k )  (29) 

satisfy 
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To investigate the performance of the above algorithm, we implement it using a software 
package, called System Simulation Language (SYSL) on a PC AT to  study the case in which 
the end-effector draws an ellipse defined by 

+ (&)2 = 1 (in Crn) 

on a plane parallel to  the base platform. The NASA end-effector parameters are TA = 0.7m, 
TB = 0.8m, 0.4 = 30°, dB = 9 4 O ,  lmin = 40inches, and &,,,, = 53inches. Here for simplicity, it 
is assumed that the payload platform frame {A} maintains a fixed orientation with respect to 
the base platform frame {B} while performing the motion. We first use the inverse kinematics 
to derive the actuator lenghts required for drawing the ellipse. The lenght information is then 
inputted to  Algorithm 1 with a sampling rate of 10 Hz to  obtain the Cartesian variables. The 
data obtained from the algorithm is plotted against the actual ellipse for comparision purpose. 
As Figure 5 shows, the proposed algorithm performs satisfactorily by providing relatively ac- 
curate information about the actual ellipse with minimal deviations. Its performance could be 
improved if the sampling rate is reduced and a faster computer is used. Real-time control of 
the end-effector requires that the sampling rate be at  least 5 Hz [16]. Therefore, with a fast 
computer and a smaller number of iterations, Algorithm 1 caa be implemented for converting 
lenght information into position and orientation in a real-time control problem. Successful im- 
plementation of Newton-Raphson method for real-time control with one iteration was reported 
in [3]. 

DETERMINATION OF WORKSPACE 
Workspace analysis of CKCM end-effectors having 6 DOF or more is a difficult task due to fact 
that its spatial geometry of multiloop structure is highly complex, which results into the non- 
existence of a closed-form solution for the forward kinematic problem. The reachable workspace 
of the end-effector depends on the maximum extension and shortening of the actuator lenghts 
and allowed ranges of joint rotation. In [9], the authors analyzed the reachable workspace of a 
6 DOF manipulator with ball joints that are evenly distributed on both the platforms. They 
considered a special case in which the payload platform is allowed only to  rotate about the 
y-axis, i.e. the rotations about the x-axis and z-axis are forbidden. As pointed out in [9], ball 
joints can only move freely with respect to all three Cartesian axes within the allowed ranges 
based on their physical dimension. As mentioned before, in the implementation the CKCM 
end-effector considered in this report, 2 rotary joints were utilized to connect each end of the 
actuator links to the platforms. Rotary joints were used instead of ball joints, because they 
require minimal maintenance and do not restrict the reachable workspace of the end-effector. 

In this section we propose an algorithm that can be implemented to determine the reachable 
workspace of a general 6 DOF CKCM end-effector with rotary joints whose distributions on 
the platforms are arbitrary provided that a symmetrical distribution is preserved subject to 
(20)-(22). The algorithm employs both inverse and forward kinematic solutions and is given 
below: 

a 

a 



Algorithm 2 

1. Select a workspace bounded by the surface of a sphere whose origin is located at [0 0 (zmaZ- 
rm;,)IT where r,,,;,, the sphere radius is equal to y, Zmas, the maximum vertical 
coordinate is obtained when all lenghts 1; for i=1,2,. . . ,6 are extended t o  maximum values, 
and z,,,;,, the minimum vertical coordinate is obtained when all lenghts 1; for i=1,2,. . . ,6, 
are shortened to  minimum values. The sphere selected here is the maximum sphere, on 
whose surface ad points can be reached by the end-effector. 

2. Use inverse kinematics to obtain the required lenghts of the surface of the sphere selected 
in Step 1. 

3. Delete those points on the sphere surface, which correspond to  lenghts that lie outside the 
allowed range specified by the lenght constraint, lmjn I 1; I I,,,. 

4. Select another sphere whose radius r is equal to r,,, + Ar, for AT 2 0. 

5. Repeat Steps 1-4 until r = r,, where rm, is the radius of the smallest sphere, on whose 
surface no point can be reached by the end-effector. 

0 

0 
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6. Plot the remaining space points in 2-dimensional or 3-dimensional coordinate systems. 

To demonstrate the performance of Algorithm 2, we applied it to determine the reachable 
workspace of the NASA CKCM end-effector whose specifications were given in previous section. 
Algorithm 2 was implemented using SYSL and Matlab on a PC AT. The results are reported in 
Figures 7-9. Figure 7 shows the x-y plane projection of the reachable workspace while Figures 
8 and 9 the x-z plane and y-z plane projections, respectively. As the figures show, the reachable 
workspace of the end-effector has the shape of a deformed football, which is as expected. 

CONCLUSION 

In this report we presented the kinematic analysis of a 6 DOF CKCM end-effector whose design 
was based on the mechanism of Stewart platform [2]. Since CKCM has high precision posi- 
tioning capability within a limited workspace, we have proposed that the CKCM end-effector 
be mounted to the end of a telerobot to perform autonomous assembly of XASA hardwares in 
space. The kinematic analysis of the end-effector was performed and resulted in a closed-form 
solution for the inverse kinematic problem so that required lenghts can be computed for a given 
Cartesian configuration. Newton-Raphson method was employed to treat the forward kinematic 
problem whose solution can be obtained iteratively using a proposed algorithm (Algorithm 1). 
Determination of the end-effector workspace was also considered and an algorithm (Algorithm 2) 
was provided to compute the reachable workspace of a general CKCM end-effector. Computer 
simulation was conducted to  investigate the proposed algorithms. Future research can be ex- 
tended to studying the dynamics of CKCM end-effectors [15] and control schemes for controlling 
pait ion and force [16] of this type of robot end-effectors. 
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Figure 1: A telerobot system with CKCM end-effectors 

Figure 3: Platform frame assignment. 
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Figure 2: The CKCM end-effector. 
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Figure 4: Vector diagram for ith actuator. Figure 5: Joint-space control scheme. 
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Figure 7: The x-y plane. 
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